If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+114t-2100=0
a = 4.9; b = 114; c = -2100;
Δ = b2-4ac
Δ = 1142-4·4.9·(-2100)
Δ = 54156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{54156}=\sqrt{4*13539}=\sqrt{4}*\sqrt{13539}=2\sqrt{13539}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(114)-2\sqrt{13539}}{2*4.9}=\frac{-114-2\sqrt{13539}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(114)+2\sqrt{13539}}{2*4.9}=\frac{-114+2\sqrt{13539}}{9.8} $
| -8x+5=3x+25 | | 3n-21=2 | | -10=-3x+14 | | 6(3m-2)=8m | | z/5+1=6 | | 2x+102=4 | | 3/4-3/5x=2/5x+1/2 | | 5g+5=14+2g | | 7+26m=42+19m | | 5y+14=7y+46 | | x-10=-15x-6 | | 3(4x+1)=3+12-5 | | 128÷8=o | | 4y+6=6y+24 | | y(y-31)=0 | | 3^x=3.5x | | m(m+23)=-132 | | ¾n-18=¼n-4 | | 7x-6x-3=8 | | -6=4-5x | | 12.89=2g+3.61 | | 51/5+13/10=x13 | | 7x+8-2=6-7x | | 3x-8=-1x | | F(x)=x(x)+6 | | 8x-7x-4=6 | | 10x-5=10x-2 | | -19+k=-38 | | 10x-5=4x+25 | | x5=1 | | 2x-12+4x=2-1x | | 51/5+13/1=13x |